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Abstract

A 2-D MHD equilibria code is used to demonstrate how the properties of the
equilibria depend on the input quantities. This code uses adiabatic quantities
as inputs, which are, entropy and magnetic flux. With the magnetic flux held
constant, it is shown that the length of the separatrix is a smooth function of
the total entropy. It is shown that the shape of the separatrix can be changed
from elliptical to racetrack by changing the profile of the entropy function.
This code can also be used for flux and wall compression since the equilibria
are determined by adiabatic quantities. Examples of flux and wall compression

are presented. An equilibrium is compared with data from the FRX-C experiment.

*Work performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.






I. Introduction

This paper presents a study of field-reversed configuration, FRC,
equilibria. A 2-D axisymmetric code is used to compute MHD equilibria. FRCs
are elongated compact toroidal plasmas which are formed in theta pinches with a
static filling on neutral gas(l). The FRC contains open and closed field line
regions, see Fig. 1. There is no toroidal magnetic field in this calculation.

The magnetic field can be written as,

B= Vy x Vo . n

The poloidal flux function y 1Is the solution of the Grad-Shafranov equation,

V e (ZEJ = = 47 dp . (2)

The usual method of computing an equilibrium is to assume that P(y) is given
and then to solve equation (2) for ¢ on a r,z grid. However for the FRC
equilibria this approach can become numerically difficult. One of the problems
encountered in this direct solution of equation (2) is that the o-point flux,
¥, is not an input. Also the separatrix length can become a sensitive function
of the input parameters(z). The usual FRC equilibrium is characterized by
large pressure gradient near the separatrix. This large pressure gradient can

become troublesome when the gradient scale length become comparable to the grid

spacing.
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An alternate method which will be used in the equilibrium calculations
presented here avoids some of these problems. In this method, the equilibrium
is specified by adiabatic quantities, instead of assuming that P(y) is given.
The adiabatic quantity which is used in this code is an entropy function, p(p),

dv 5/3

u(p) = P(dp] , 3)

where P is the pressure and V is the volume enclosed by the flux surface
labeled by p. Also the poloidal magnetic flux function ¢(p) is an adiabatic

quantity used as an input. The normalized flux coordinate p is given by,

VoV
= 4
P Vo (4)

where y, is the value of ¢y at the o-point, or Y, = $(0). p has a value of 0 at
the o-point, 1 at the separatrix, and is equal to ww/wo at the outer boundary.
¥, is the value of the flux on the outer boundary. The outer boundary is
assumed to be a flux surface. The function ¢(p) assigns a flux value to each p
surface. The u{p) function is not exactly the entropy, but is conserved in the
same way. If p(p) is multiplied by Ap it will be proportional to the entropy

enclosed by the two surfaces p and p+Ap.

One of the advantages of using adiabatic quantities is that the o-point
flux, ¢,, is an input quantity. Whereas if P(y) is given the b, is a computed
quantity. This feature of the adiabatic method allows one to use the

experimentally determined ¥, as an input. Another advantage of using adiabatic

quantities is that the separatrix length is not a sensitive function of the
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input quantities. This is not the case with other methods which are highly
sensitive to inputs(z). The adiabatic method also eliminates the possibility

of bifurcation of the type which have solution with two values of b, for one

input P(w)(3).

Studies of wall and flux compression are easy when adiabatic quantities
are used to determine the equilibrium. An adiabatic flux compression can be
simulated by computing a sequence equilibria with the same u(p) function but
different values of ¢ on the boundary, Ve A wall compression simulation can
be done by again holding u(p) fixed and computing a sequence of equilibria with

different wall radii.

The computer code used in these calculations uses flux surface
coordinates. The details of this method is given in Reference (4). The
equilibrium calculation is done by solving the Grad-Shafranov equation for y on
an approximate flux surface grid, using a Galerkin method with triangular
finite elements. The boundary value which is used here is that ¢ is a constant
on the outer wall, ¥, At the top of the 2-D region the magnetic field lines
are assumed to be parallel to the z axis. This is done by using the boundary
condition that 3y/dz = 0 at the top. With a new value of } given on the
approximate Y grid the points are then moved to give a better approximate flux
surfaces. This determines a new shape for all internal flux surfaces including

the separatrix.

Also since adiabatic quantities are used to determine the equilibrium
another step must be added to the iteration procedure. This is the solution of

the flux surface average of the Grad-Shafranov equation. This gives a 1-D ODE
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which is solved for V(p). v, is used in the solution of this ODE. The
boundary conditions used here is that V(0) = 0 and V(1) = separatrix volume,

which is determined by the 2-D solution. With V(p) given, P, which is needed

to solve Equation (2), can be obtained from u(p) using Equation (3).

The equilibrium calculation is an iterative procedure which alternates
between the solution of the 2-D Grad-Shafranov equation and the flux surface
average of this equation. Convergence is measured by how close the y values

computed on the finite element grid are to the flux surface 1label.

One of the advantages of using flux surface coordinates is that the grid
spacing can be made small in the regions where the gradients are large. 1In the
FRC these large gradients are localized near the separatrix where the current
density is high. With flux surface coordinates the surface spacing can be
reduced near the separatrix to obtain better resolution. This is done by

having small Ay for the surfaces near the separatrix.

Also with flux surface cordinates the evaluation of the flux surface
averages are easy. No interpolation is necessary to find the location of the
flux surfaces. Other method which give ¢ on an r,z grid require interpolation
to obtain flux surface averages. Flux surface averages are used in the 1-D

flux surface averaged Grad-Shafranov equation.



II. Results

In this section results of the FRC equilibrium code are presented. First
results are presented which show the dependence of the length of the separatrix
on the total entropy. Next a study is presented of the effect of the entropy
profile on the shape of the separatrix. Two compression studies are then
presented. Finally a comparison is given of experimental interferometry data

with an equilibrium calculation for the FRX-C experiment.

Figure 2 illustrates the dependence of the separatrix length, Lgs and the

separatrix radius, r_, on the total entropy enclosed by the separatrix, Mp..,

S

defined by,

Mine = . u(p) de (5)

All other input quantities are held constant. There are two sets of data
presented in this figure. One is for a straight cylinder flux conserver, solid
points, and one set for a flux conserver with a passive mirror coil. In this
case the outer coil has a smaller diameter on the ends. The coil dimensions in

this set of calculation are similar to the FRX-C experiment at LANL.

As can be seen in Fig. (2) the separatrix radius is approximately
independent of the total entropy. Thils statement is only true as long as the
FRC is elongated. For the case without the passive mirror the separatrix
lenght, Es, is approximately a straight line on the log-log plot. For the case
with the mirror coil the £g 1s reduced when the plasma begins to lean against

the mirror field. Also the separatrix radius is increased slightly.
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Figure 3 illustrates the dependence of the shape of the separatrix on the
u(p) function. These examples have the same total entropy. The form of the
input function for these four cases are, from left to right, YT=p , (1-p),
(l—p)2 and (1—p)4. The equilibria with the large gradient of u(p) near the
separatrix tend to have separatrix with an elliptical shape. The u(p) profiles
which are more peaked near the o-point tend to produce the more racetrack
shaped separatrix. Also note that the volume of the inner most flux surface
tends to be larger for the peaked p(p). This is expected since the larger
entropy enclosed by the inner flux surfaces will expand these flux surfaces.
Also note that the current density near the separatrix is more peaked for the

elliptical shaped flux surfaces.

Figure 4 illustrates an adiabatic wall compression sequence in which all
input are held constant except for the radius of the wall LS In this figure
three equilibria are presented with wall radii of 15, 20, and 30 cm.
Reference (5) gives the dependence of separatrix length, 2., and the magnetic

field at the wall, B , on the wall radius, r_,

-0.4 _
Lg T, ~ constant (6)
B r2 ~ constant (7N
W oW~
Xg ~ constant , (8)

where Xg = rS/rw. The results from the computed equilibria agree with these
expression within 1%. The u{p) used in these calculations is proportional to

(1 - p), which is zero on the separatrix.
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Figure 5 illustrate an adiabatic flux compression sequence. In this set
of equilibria the only input which 1is changed is the flux on the outer wall.
The sequence would correspond to an experiment where the current in the pinch
coil is increased. The calculation would be appropriate for an experiment
where the current is increased faster than any transport processes across the
field lines but slow enough that temperature equilibration along the field does
occur. As can be seen flux compression changes both the separatrix lenght, %,

and the separatrix radius, r_,. Flux compression produces a flatter pressure

s
profile and a current profile which becomes more peaked near the separatrix.

The u(p) used in these calculations is proportional to (1 - p).

Simple expression similar to equatioms (6), (7) and (8) do not exist for
flux compression. The evolution of the compression depends on the details of
the initial profiles. Reference (5) gives expression similar to Equatioms (6),
(7) and (8) only for limiting forms of the pressure profile. The &, and B for
the flux compression given in Figure 5 are within 7% of the "high flux sharp

boundary'" model given in Reference 5.

Figure 6 gives an equilbrium which was produced to model the FRX-C
experiment at LANL(6). The dependence illustrated in Figures (2), (3) and (5)
are helpful in producing an equilibria with the desired parameters. By
changing the external flux, Y., or the internal flux, ¢, the separatrix
radius, rg, can be matched to the desired value. Information of this sort is
glven in Figure 5, (or a similar set for different values of r ). With rg set
the separatrix length is matched by changing, Myyr, Equation (5). Then the

separatrix shape can be charged by varying the u(p) profile. To match the

experiment some plasma pressure must be added in the open field line region.
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This is done by adding and exponential decreasing P(¢) in this region, based on
the value of P(y) just inside of the separatrix. Figure 7 glves a comparison
of experimental side—on interferometry data(7) with the same quantity computed
from the equilibrim shown in Figure 6. In this calculation the electron and
ion temperature are assumed to be constant in space. This assumption is

necessary to obtain a density profile from the given pressure profile.

In summary, it has been demonstrated that the FRC equilibrium code can
compute equilibrium with a large range of parameters. Also by adjusting the

inputs equilibrium similar to experiments can be computed.
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Figures

FRC Equilibrium

Dependence of separatrix lenght, £, and separatrix radius, rg,
on the total entropy enclosed by the separatrix, MinTe Solid
points are for equilibria without passive mirror. Open points
are for equilibrium with passive mirror.

Dependence of separatrix shape on the entropy function profile
u(p). Each column corresponds to a different equilibria. The
input function u(p) is given in the second row.

Wall compression simulation. Each column corresponds to a
equilibrium with a different wall radius, e

Flux compression simulation. Each column corresponds to a
different flux enclosed by the outer boundary, ¥

w

FRX-C equilibrium. (a) Flux surfaces, (b) Poloidal flux vs r at
z = 0, (c) Pressure vs r at z = 0, (d) Magnetic field vs r at
z 0, and (e) Current density vs r at z = 0.

Comparison with side-on interferometry d?%?. Line is from
simulation, points are experimental data . (a) Line integral
of density, normalized, vs, chord, d, at midplane, z = 0, and end

z = 90 cm. (b) Line integral of density, normalized, vs, z aat
d = 0.
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